Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.080
1.
BMC Pregnancy Childbirth ; 24(1): 311, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724897

AIM: The purpose of this study is to evaluate the oral probiotic effect on pregnancy outcomes in pregnant women undergoing cerclage compared to placebo. METHODS: This study was a double-blind randomized clinical trial undertaken in Yasuj, Iran. 114 eligible participants who have undergone cerclage were randomly divided to either receive probiotic adjuvant or 17α-OHP (250 mg, IM) with placebo from the 16th -37th week of pregnancy by "block" randomization method. Our primary outcomes were preterm labor (PTB) (late and early) and secondary outcomes were other obstetrical and neonatal outcomes included preterm pre-labor rupture of membranes (PPROM), pre-labor rupture of membranes (PROM), mode of delivery, and neonatal outcomes including anthropometric characterize and Apgar score (one and fifth-minute). RESULTS: Results show that there are no statistically significant differences between the two groups in terms of PTB in < 34th (15.51% vs. 17.86%; P = 0.73) and 34-37th weeks of pregnancy (8.7% vs. 16.1%; P = 0.22), and mode of delivery (P = 0.09). PPROM (8.7% vs. 28.5%; P = 0.006) PROM (10.3% vs. 25%; P = 0.04) was significantly lower in patients receiving probiotic adjuvant compared to the control group. After delivery, the findings of the present study showed that there were no significant differences in newborn's weight (3082.46 ± 521.8vs. 2983.89 ± 623.89), head circumstance (36.86 ± 1.53vs. 36.574 ± 1.52), height (45.4 ± 5.34 vs. 47.33 ± 4.92) and Apgar score in one (0.89 ± 0.03 vs. 0.88 ± 0.05) and five minutes (0.99 ± 0.03vs. 0.99 ± 0.03) after birth. CONCLUSION: Our result has shown that the consumption of Lactofem probiotic from the 16th week until 37th of pregnancy can lead to a reduction of complications such as PPROM and PROM.


Cerclage, Cervical , Pregnancy Outcome , Probiotics , Humans , Pregnancy , Female , Probiotics/therapeutic use , Probiotics/administration & dosage , Double-Blind Method , Adult , Iran , Cerclage, Cervical/methods , Infant, Newborn , Fetal Membranes, Premature Rupture , Young Adult , Premature Birth/prevention & control , Obstetric Labor, Premature/prevention & control , Administration, Oral
2.
Nutr Diabetes ; 14(1): 25, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729941

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a significant risk factor for non-alcoholic fatty liver disease (NAFLD). Increased fasting blood sugar (FBS), fasting insulin (FI), and insulin resistance (HOMA-IR) are observed in patients with NAFLD. Gut microbial modulation using prebiotics, probiotics, and synbiotics has shown promise in NAFLD treatment. This meta-umbrella study aimed to investigate the effects of gut microbial modulation on glycemic indices in patients with NAFLD and discuss potential mechanisms of action. METHODS: A systematic search was conducted in PubMed, Web of Science, Scopus, and Cochrane Library until March 2023 for meta-analyses evaluating the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD. Random-effect models, sensitivity analysis, and subgroup analysis were employed. RESULTS: Gut microbial therapy significantly decreased HOMA-IR (ES: -0.41; 95%CI: -0.52, -0.31; P < 0.001) and FI (ES: -0.59; 95%CI: -0.77, -0.41; P < 0.001). However, no significant effect was observed on FBS (ES: -0.17; 95%CI: -0.36, 0.02; P = 0.082). Subgroup analysis revealed prebiotics had the most potent effect on HOMA-IR, followed by probiotics and synbiotics. For FI, synbiotics had the most substantial effect, followed by prebiotics and probiotics. CONCLUSION: Probiotics, prebiotics, and synbiotics administration significantly reduced FI and HOMA-IR, but no significant effect was observed on FBS.


Gastrointestinal Microbiome , Glycemic Index , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Prebiotics , Probiotics , Synbiotics , Humans , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diet therapy , Prebiotics/administration & dosage , Probiotics/therapeutic use , Probiotics/administration & dosage , Synbiotics/administration & dosage , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/therapy , Insulin/blood
3.
Gut Microbes ; 16(1): 2347722, 2024.
Article En | MEDLINE | ID: mdl-38706205

The intestine is prone to radiation damage in patients undergoing radiotherapy for pelvic tumors. However, there are currently no effective drugs available for the prevention or treatment of radiation-induced enteropathy (RIE). In this study, we aimed at investigating the impact of indole-3-carboxaldehyde (I3A) derived from the intestinal microbiota on RIE. Intestinal organoids were isolated and cultivated for screening radioprotective tryptophan metabolites. A RIE model was established using 13 Gy whole-abdominal irradiation in male C57BL/6J mice. After oral administration of I3A, its radioprotective ability was assessed through the observation of survival rates, clinical scores, and pathological analysis. Intestinal stem cell survival and changes in the intestinal barrier were observed through immunofluorescence and immunohistochemistry. Subsequently, the radioprotective mechanisms of I3A was investigated through 16S rRNA and transcriptome sequencing, respectively. Finally, human colon cancer cells and organoids were cultured to assess the influence of I3A on tumor radiotherapy. I3A exhibited the most potent radioprotective effect on intestinal organoids. Oral administration of I3A treatment significantly increased the survival rate in irradiated mice, improved clinical and histological scores, mitigated mucosal damage, enhanced the proliferation and differentiation of Lgr5+ intestinal stem cells, and maintained intestinal barrier integrity. Furthermore, I3A enhanced the abundance of probiotics, and activated the AhR/IL-10/Wnt signaling pathway to promote intestinal epithelial proliferation. As a crucial tryptophan metabolite, I3A promotes intestinal epithelial cell proliferation through the AhR/IL-10/Wnt signaling pathway and upregulates the abundance of probiotics to treat RIE. Microbiota-derived I3A demonstrates potential clinical application value for the treatment of RIE.


Gastrointestinal Microbiome , Indoles , Mice, Inbred C57BL , Probiotics , Receptors, Aryl Hydrocarbon , Wnt Signaling Pathway , Animals , Mice , Gastrointestinal Microbiome/drug effects , Male , Humans , Probiotics/administration & dosage , Probiotics/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Indoles/metabolism , Indoles/pharmacology , Radiation-Protective Agents/pharmacology , Organoids/metabolism , Radiation Injuries/metabolism , Radiation Injuries/prevention & control , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/radiation effects , Intestines/microbiology , Intestines/radiation effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics
4.
Gut Microbes ; 16(1): 2347715, 2024.
Article En | MEDLINE | ID: mdl-38717445

Our recent randomized, placebo-controlled study in Irritable Bowel Syndrome (IBS) patients with diarrhea or alternating bowel habits showed that the probiotic Bifidobacterium longum (BL) NCC3001 improves depression scores and decreases brain emotional reactivity. However, the involved metabolic pathways remain unclear. This analysis aimed to investigate the biochemical pathways underlying the beneficial effects of BL NCC3001 using metabolomic profiling. Patients received probiotic (1x 1010CFU, n=16) or placebo (n=19) daily for 6 weeks. Anxiety and depression were measured using the Hospital Anxiety and Depression Scale. Brain activity in response to negative emotional stimuli was assessed by functional Magnetic Resonance Imaging. Probiotic fecal abundance was quantified by qPCR. Quantitative measurement of specific panels of plasma host-microbial metabolites was performed by mass spectrometry-based metabolomics. Probiotic abundance in feces was associated with improvements in anxiety and depression scores, and a decrease in amygdala activation. The probiotic treatment increased the levels of butyric acid, tryptophan, N-acetyl tryptophan, glycine-conjugated bile acids, and free fatty acids. Butyric acid concentration correlated with lower anxiety and depression scores, and decreased amygdala activation. Furthermore, butyric acid concentration correlated with the probiotic abundance in feces. In patients with non-constipation IBS, improvements in psychological comorbidities and brain emotional reactivity were associated with an increased abundance of BL NCC3001 in feces and specific plasma metabolites, mainly butyric acid. These findings suggest the importance of a probiotic to thrive in the gut and highlight butyric acid as a potential biochemical marker linking microbial metabolism with beneficial effects on the gut-brain axis.


Feces , Irritable Bowel Syndrome , Metabolome , Probiotics , Irritable Bowel Syndrome/psychology , Irritable Bowel Syndrome/microbiology , Humans , Probiotics/administration & dosage , Male , Adult , Female , Feces/microbiology , Feces/chemistry , Middle Aged , Depression , Anxiety , Bifidobacterium longum , Gastrointestinal Microbiome , Metabolomics , Comorbidity
5.
Gut Microbes ; 16(1): 2341717, 2024.
Article En | MEDLINE | ID: mdl-38717360

The occurrence and progression of tumors are often accompanied by disruptions in the gut microbiota. Inversely, the impact of the gut microbiota on the initiation and progression of cancer is becoming increasingly evident, influencing the tumor microenvironment (TME) for both local and distant tumors. Moreover, it is even suggested to play a significant role in the process of tumor immunotherapy, contributing to high specificity in therapeutic outcomes and long-term effectiveness across various cancer types. Probiotics, with their generally positive influence on the gut microbiota, may serve as effective agents in synergizing cancer immunotherapy. They play a crucial role in activating the immune system to inhibit tumor growth. In summary, this comprehensive review aims to provide valuable insights into the dynamic interactions between probiotics, gut microbiota, and cancer. Furthermore, we highlight recent advances and mechanisms in using probiotics to improve the effectiveness of cancer immunotherapy. By understanding these complex relationships, we may unlock innovative approaches for cancer diagnosis and treatment while optimizing the effects of immunotherapy.


Gastrointestinal Microbiome , Immunotherapy , Neoplasms , Probiotics , Tumor Microenvironment , Probiotics/therapeutic use , Probiotics/administration & dosage , Probiotics/pharmacology , Humans , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/microbiology , Tumor Microenvironment/immunology , Animals
6.
Front Endocrinol (Lausanne) ; 15: 1385872, 2024.
Article En | MEDLINE | ID: mdl-38742202

Objective: To evaluate the quality of evidence, potential biases, and validity of all available studies on dietary intervention and diabetic nephropathy (DN). Methods: We conducted an umbrella review of existing meta-analyses of randomized controlled trials (RCTs) that focused on the effects of dietary intervention on DN incidence. The literature was searched via PubMed, Embase, Web of Science, and the Cochrane Database of Systematic Reviews. According to the Grading of Recommendations, Assessment, Development and Evaluation (GRADE), evidence of each outcome was evaluated and graded as "high", "moderate", "low" or "very low" quality to draw conclusions. Additionally, we classified evidence of outcomes into 4 categories. Results: We identified 36 meta-analyses of RCTs and 55 clinical outcomes of DN from 395 unique articles. Moderate-quality evidence suggested that probiotic supplementation could significantly improve blood urea nitrogen (BUN), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels in DN patients. Low-quality evidence indicated that probiotic supplementation significantly improved the serum creatinine concentration, urinary albumin-creatinine ratio (UACR), fasting blood glucose (FBG), HbA1c and high-density lipoprotein cholesterol (HDL-C) in DN patients. In addition, low-quality evidence suggested that a salt restriction diet could significantly improve the creatinine clearance rate (CrCl) in patients with DN. Low-quality evidence suggested that vitamin D supplementation could significantly improve the UACR in patients with DN. In addition, low-quality evidence has indicated that soy isoflavone supplementation could significantly improve BUN, FBG, total cholesterol (TC), triglyceride (TG) and LDL-C levels in patients with DN. Furthermore, low-quality evidence suggested that coenzyme Q10 supplementation could significantly improve HbA1c, TC and HDL-C in patients with DN, and dietary polyphenols also significantly improved HbA1c in patients with DN. Finally, low-quality evidence suggested that supplementation with antioxidant vitamins could significantly improve the serum creatinine concentration, systolic blood pressure, and HbA1c level in patients with DN. Given the small sample size, all significantly associated outcomes were evaluated as class IV evidence. Conclusion: Moderate to low amounts of evidence suggest that supplementation with probiotics, vitamin D, soy isoflavones, coenzyme Q10, dietary polyphenols, antioxidant vitamins, or salt-restricted diets may significantly improve clinical outcomes in patients with DN. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024512670.


Diabetic Nephropathies , Randomized Controlled Trials as Topic , Humans , Diabetic Nephropathies/diet therapy , Diabetic Nephropathies/therapy , Systematic Reviews as Topic , Meta-Analysis as Topic , Dietary Supplements , Probiotics/therapeutic use , Probiotics/administration & dosage
7.
Cell Commun Signal ; 22(1): 268, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745207

Ulcerative colitis (UC) is increasingly common, and it is gradually become a kind of global epidemic. UC is a type of inflammatory bowel disease (IBD), and it is a lifetime recurrent disease. UC as a common disease has become a financial burden for many people and has the potential to develop into cancer if not prevented or treated. There are multiple factors such as genetic factors, host immune system disorders, and environmental factors to cause UC. A growing body of research have suggested that intestinal microbiota as an environmental factor play an important role in the occurrence and development of UC. Meanwhile, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of UC. In addition, the main clinical drugs to treat UC are amino salicylate and corticosteroid. These clinical drugs always have some side effects and low success rate when treating patients with UC. Therefore, there is an urgent need for safe and efficient methods to treat UC. Based on this, probiotics and prebiotics may be a valuable treatment for UC. In order to promote the wide clinical application of probiotics and prebiotics in the treatment of UC. This review aims to summarize the recent literature as an aid to better understanding how the probiotics and prebiotics contributes to UC while evaluating and prospecting the therapeutic effect of the probiotics and prebiotics in the treatment of UC based on previous publications.


Colitis, Ulcerative , Gastrointestinal Microbiome , Prebiotics , Probiotics , Humans , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Probiotics/therapeutic use , Probiotics/administration & dosage , Prebiotics/administration & dosage , Animals
10.
Mol Biol Rep ; 51(1): 613, 2024 May 05.
Article En | MEDLINE | ID: mdl-38704764

BACKGROUND: The non-alcoholic fatty liver disease (NAFLD) is prevalent in as many as 25% of adults who are afflicted with metabolic syndrome. Oxidative stress plays a significant role in the pathophysiology of hepatic and renal injury associated with NAFLD. Therefore, probiotics such as Lactobacillus casei (LBC) and the microalga Chlorella vulgaris (CV) may be beneficial in alleviating kidney injury related to NAFLD. MATERIALS AND METHODS: This animal study utilized 30 C57BL/6 mice, which were evenly distributed into five groups: the control group, the NAFLD group, the NAFLD + CV group, the NAFLD + LBC group, and the NAFLD + CV + LBC group. A high-fat diet (HFD) was administered to induce NAFLD for six weeks. The treatments with CV and LBC were continued for an additional 35 days. Biochemical parameters, total antioxidant capacity (TAC), and the expression of kidney damage marker genes (KIM 1 and NGAL) in serum and kidney tissue were determined, respectively. A stereological analysis was conducted to observe the structural changes in kidney tissues. RESULTS: A liver histopathological examination confirmed the successful induction of NAFLD. Biochemical investigations revealed that the NAFLD group exhibited increased ALT and AST levels, significantly reduced in the therapy groups (p < 0.001). The gene expression levels of KIM-1 and NGAL were elevated in NAFLD but were significantly reduced by CV and LBC therapies (p < 0.001). Stereological examinations revealed reduced kidney size, volume, and tissue composition in the NAFLD group, with significant improvements observed in the treated groups (p < 0.001). CONCLUSION: This study highlights the potential therapeutic efficacy of C. vulgaris and L. casei in mitigating kidney damage caused by NAFLD. These findings provide valuable insights for developing novel treatment approaches for managing NAFLD and its associated complications.


Chlorella vulgaris , Diet, High-Fat , Kidney , Lacticaseibacillus casei , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Probiotics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/pathology , Animals , Diet, High-Fat/adverse effects , Mice , Kidney/pathology , Kidney/metabolism , Probiotics/pharmacology , Probiotics/administration & dosage , Male , Oxidative Stress/drug effects , Disease Models, Animal , Liver/pathology , Liver/metabolism , Kidney Diseases/etiology , Kidney Diseases/pathology , Kidney Diseases/therapy , Antioxidants/metabolism
11.
Age Ageing ; 53(Supplement_2): ii70-ii79, 2024 May 11.
Article En | MEDLINE | ID: mdl-38745493

This systematic review evaluated the impact of oral probiotics on the immune response to vaccination in older people. A literature search was performed in three electronic databases up to January 2023. Randomised controlled trials (RCTs) conducted in older people (age ≥ 60 years) investigating oral probiotics and vaccine response outcomes were included. Characteristics and outcome data of the included studies were extracted and analysed and study quality was assessed using the Cochrane Risk of Bias Tool for randomised trials. Ten RCTs involving 1,560 participants, reported in 9 papers, were included. Nine studies involved the seasonal influenza vaccine and one a COVID-19 vaccine. All studies used lactobacilli, some in combination with bifidobacteria. Studies reported outcomes including anti-vaccine antibody titres or concentrations, seroconversion and seroprotection. When comparing antibody titres, seroprotection rate and seroconversion rate between probiotic and placebo groups expressed as a response ratio, the weighted mean values were 1.29, 1.16 and 2.00, respectively. Meta-analysis showed that probiotics increase seroconversion rates to all three strains of the seasonal influenza vaccine: odds ratio (95% confidence interval) 2.74 (1.31, 5.70; P = 0.007) for the H1N1 strain; 1.90 (1.04, 3.44; P = 0.04) for the H3N2 strain; 1.72 (1.05, 2.80; P = 0.03) for the B strain. There was a low level of heterogeneity in these findings. Several studies were at high risk of bias due to missing outcome data. Lactobacilli may improve the vaccine response, but further research is needed to be more certain of this.


Influenza Vaccines , Probiotics , Randomized Controlled Trials as Topic , Humans , Probiotics/therapeutic use , Probiotics/administration & dosage , Aged , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Administration, Oral , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Vaccination/methods , Middle Aged , COVID-19/prevention & control , COVID-19/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , SARS-CoV-2/immunology
12.
Sci Rep ; 14(1): 10960, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744950

The relationship between gut microbiota and obesity has recently been an important subject for research as the gut microbiota is thought to affect body homeostasis including body weight and composition, intervening with pro and prebiotics is an intelligent possible way for obesity management. To evaluate the effect of hypo caloric adequate fiber regimen with probiotic supplementation and physical exercise, whether it will have a good impact on health, body composition, and physique among obese Egyptian women or has no significant effect. The enrolled 58 women, in this longitudinal follow-up intervention study; followed a weight loss eating regimen (prebiotic), including a low-carbohydrate adequate-fiber adequate-protein dietary pattern with decreased energy intake. They additionally received daily probiotic supplements in the form of yogurt and were instructed to exercise regularly for 3 months. Anthropometric measurements, body composition, laboratory investigations, and microbiota analysis were obtained before and after the 3 months weight loss program. Statistically highly significant differences in the anthropometry, body composition parameters: and obesity-related biomarkers (Leptin, ALT, and AST) between the pre and post-follow-up measurements at the end of the study as they were all decreased. The prebiotic and probiotic supplementation induced statistically highly significant alterations in the composition of the gut microbiota with increased relative abundance of Lactobacillus, Bifidobacteria, and Bacteroidetes and decreased relative abundance of Firmicutes and Firmicutes/Bacteroidetes Ratio. Hypo caloric adequate fiber regimen diet with probiotics positively impacts body composition and is effective for weight loss normalizing serum Leptin and AST.


Body Composition , Gastrointestinal Microbiome , Obesity , Prebiotics , Probiotics , Humans , Probiotics/administration & dosage , Female , Prebiotics/administration & dosage , Adult , Longitudinal Studies , Obesity/therapy , Obesity/diet therapy , Obesity/microbiology , Weight Reduction Programs/methods , Weight Loss , Middle Aged , Exercise
13.
Sex Transm Dis ; 51(6): 437-440, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38733973

OBJECTIVES: Live biotherapeutic products (LBPs) containing vaginal Lactobacillus crispatus are promising adjuvant treatments to prevent recurrent bacterial vaginosis (BV) but may depend on the success of initial antibiotic treatment. METHODS: A post hoc analysis of data collected during the phase 2b LACTIN-V randomized control trial (L. crispatus CTV-05) explored the impact of clinical BV cure defined as Amsel criteria 0 of 3 (excluding pH, per 2019 Food and Drug Administration guidance) 2 days after completion of treatment with vaginal metronidazole gel on the effectiveness of an 11-week LACTIN-V dosing regimen to prevent BV recurrence by 12 and 24 weeks. RESULTS: At enrollment, 88% of participants had achieved postantibiotic clinical BV cure. The effect of LACTIN-V on BV recurrence compared with placebo differed by initial clinical BV cure status. The LACTIN-V to placebo risk ratio of BV recurrence by 12 weeks was 0.56 (95% confidence interval, 0.35-0.77) among participants with initial clinical BV cure after metronidazole treatment and 1.34 (95% confidence interval, 0.47-2.23) among participants without postantibiotic clinical BV cure. Among women receiving LACTIN-V, those who had achieved postantibiotic clinical BV cure at enrollment reached higher levels of detectable L. crispatus CTV-05 compared with women failing to achieve postantibiotic clinical BV cure. CONCLUSIONS: LACTIN-V seems to only decrease BV recurrence in women with clinical cure of BV after initial antibiotic treatment. Future trials of LBPs should consider limiting enrollment to these women.


Anti-Bacterial Agents , Lactobacillus crispatus , Metronidazole , Probiotics , Vaginosis, Bacterial , Humans , Female , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/prevention & control , Vaginosis, Bacterial/microbiology , Metronidazole/administration & dosage , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Adult , Lactobacillus crispatus/physiology , Probiotics/administration & dosage , Treatment Outcome , Recurrence , Secondary Prevention , Administration, Intravaginal , Young Adult , Vagina/microbiology , Double-Blind Method
14.
Cancer Control ; 31: 10732748241253959, 2024.
Article En | MEDLINE | ID: mdl-38736182

OBJECTIVE: To evaluate the effectiveness of oral probiotic supplements in patients undergoing immune checkpoint inhibitors (ICIs) for the treatment of advanced lung cancer. METHODS: This prospective real-world study enrolled patients with advanced lung cancer who were receiving ICIs as part of their treatment. The patients were divided into 2 groups: Group OPS received oral probiotic supplements along with ICIs, while Group C did not. The primary endpoint was progression-free survival (PFS). The secondary outcome measure was the objective response rate (ORR). RESULTS: A total of 253 patients were included in the study, with 71 patients in Group OPS and 182 patients in the control group (Group C). No significant differences were observed in the median PFS between the 2 groups for all patients. However, for small cell lung cancer (SCLC) patients, the median PFS was significantly better in the Group OPS compared to the Group C (11.1 months vs 7.0 months, P = .049). No significant differences were observed in median PFS for the non-small cell lung cancer (NSCLC) cohort between the 2 groups, but a trend towards better median PFS in Group OPS was noticed (16.5 months vs 12.3 months, P = .56). The ORR for the entire cohort was 58.0%. CONCLUSION: Oral probiotics supplements in combination with ICIs included regimen may improve the outcome in patients with advanced SCLC. The above points should be proved by further study.


This study examined whether the addition of oral probiotic supplements to ICIs could enhance the treatment of advanced lung cancer. A total of 253 patients with advanced lung cancer were involved in the study, with some receiving probiotics in combination with ICIs and others not. The findings revealed that patients with SCLC who took probiotics had significantly better PFS compared to those who did not. Additionally, there was a tendency towards enhanced PFS in NSCLC patients who received probiotics. In conclusion, the study indicates that incorporating oral probiotics with ICIs may lead to better outcomes for patients with advanced SCLC, although further research is necessary to validate these results.This real world study explores whether oral probiotic supplements along with immune checkpoint inhibitors (ICIs) can help treat advanced lung cancer. The study included 253 patients with advanced lung cancer receiving ICIs treatment, part of them taking probiotics along with ICIs. The results showed that patients with small cell lung cancer (SCLC) who took probiotics had better progression-free survival (PFS) compared to those who didn't. There was also a trend towards better PFS in non-small cell lung cancer (NSCLC) patients who took probiotics. Overall, the study suggests that taking oral probiotics along with ICIs may improve outcomes for patients with advanced SCLC, but more research is needed to confirm these findings.


Immune Checkpoint Inhibitors , Lung Neoplasms , Probiotics , Humans , Probiotics/administration & dosage , Probiotics/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lung Neoplasms/mortality , Male , Female , Prospective Studies , Middle Aged , Aged , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/administration & dosage , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/mortality , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/pathology , Administration, Oral , Dietary Supplements , Progression-Free Survival , Complementary Therapies/methods , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Adult
15.
Gut Microbes ; 16(1): 2350173, 2024.
Article En | MEDLINE | ID: mdl-38738780

Although fecal microbiota composition is considered to preserve relevant and representative information for distal colonic content, it is evident that it does not represent microbial communities inhabiting the small intestine. Nevertheless, studies investigating the human small intestinal microbiome and its response to dietary intervention are still scarce. The current study investigated the spatio-temporal dynamics of the small intestinal microbiome within a day and over 20 days, as well as its responses to a 14-day synbiotic or placebo control supplementation in 20 healthy subjects. Microbial composition and metabolome of luminal content of duodenum, jejunum, proximal ileum and feces differed significantly from each other. Additionally, differences in microbiota composition along the small intestine were most pronounced in the morning after overnight fasting, whereas differences in composition were not always measurable around noon or in the afternoon. Although overall small intestinal microbiota composition did not change significantly within 1 day and during 20 days, remarkable, individual-specific temporal dynamics were observed in individual subjects. In response to the synbiotic supplementation, only the microbial diversity in jejunum changed significantly. Increased metabolic activity of probiotic strains during intestinal passage, as assessed by metatranscriptome analysis, was not observed. Nevertheless, synbiotic supplementation led to a short-term spike in the relative abundance of genera included in the product in the small intestine approximately 2 hours post-ingestion. Collectively, small intestinal microbiota are highly dynamic. Ingested probiotic bacteria could lead to a transient spike in the relative abundance of corresponding genera and ASVs, suggesting their passage through the entire gastrointestinal tract. This study was registered to http://www.clinicaltrials.gov, NCT02018900.


Bacteria , Feces , Gastrointestinal Microbiome , Intestine, Small , Synbiotics , Humans , Synbiotics/administration & dosage , Gastrointestinal Microbiome/physiology , Male , Adult , Intestine, Small/microbiology , Intestine, Small/metabolism , Female , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/genetics , Feces/microbiology , Young Adult , Probiotics/administration & dosage , Metabolome , Healthy Volunteers , Spatio-Temporal Analysis
16.
Appl Microbiol Biotechnol ; 108(1): 333, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739270

Currently, there are many different therapies available for inflammatory bowel disease (IBD), including engineered live bacterial therapeutics. However, most of these studies focus on producing a single therapeutic drug using individual bacteria, which may cause inefficacy. The use of dual drugs can enhance therapeutic effects. However, expressing multiple therapeutic drugs in one bacterial chassis increases the burden on the bacterium and hinders good secretion and expression. Therefore, a dual-bacterial, dual-drug expression system allows for the introduction of two probiotic chassis and enhances both therapeutic and probiotic effects. In this study, we constructed a dual bacterial system to simultaneously neutralize pro-inflammatory factors and enhance the anti-inflammatory pathway. These bacteria for therapy consist of Escherichia coli Nissle 1917 that expressed and secreted anti-TNF-α nanobody and IL-10, respectively. The oral administration of genetically engineered bacteria led to a decrease in inflammatory cell infiltration in colon and a reduction in the levels of pro-inflammatory cytokines. Additionally, the administration of engineered bacteria did not markedly aggravate gut fibrosis and had a moderating effect on intestinal microbes. This system proposes a dual-engineered bacterial drug combination treatment therapy for inflammatory bowel disease, which provides a new approach to intervene and treat IBD. KEY POINTS: • The paper discusses the effects of using dual engineered bacteria on IBD • Prospects of engineered bacteria in the clinical treatment of IBD.


Escherichia coli , Inflammatory Bowel Diseases , Interleukin-10 , Probiotics , Animals , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/drug therapy , Mice , Escherichia coli/genetics , Probiotics/administration & dosage , Interleukin-10/genetics , Tumor Necrosis Factor-alpha/metabolism , Disease Models, Animal , Genetic Engineering , Gastrointestinal Microbiome , Mice, Inbred C57BL , Colon/microbiology , Colon/pathology , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology
17.
Front Cell Infect Microbiol ; 14: 1371916, 2024.
Article En | MEDLINE | ID: mdl-38716199

Porcine epidemic diarrhea virus (PEDV) has become a challenging problem in pig industry worldwide, causing significant profit losses. Lactobacillus rhamnosus GG (LGG) has been regarded as a safe probiotic strain and has been shown to exert protective effects on the intestinal dysfunction caused by PEDV. This study evaluated the effect of LGG on the gut health of lactating piglets challenged with PEDV. Fifteen piglets at 7 days of age were equally assigned into 3 groups (5 piglets per group): 1) control group (basal diet); 2) PEDV group: (basal diet + PEDV challenged); 3) LGG + PEDV group (basal diet + 3×109 CFU/pig/day LGG + PEDV). The trial lasted 11 days including 3 days of adaptation. The treatment with LGG was from D4 to D10. PEDV challenge was carried out on D8. PEDV infection disrupted the cell structure, undermined the integrity of the intestinal tract, and induced oxidative stress, and intestinal damage of piglets. Supplementation of LGG improved intestinal morphology, enhanced intestinal antioxidant capacity, and alleviated jejunal mucosal inflammation and lipid metabolism disorders in PEDV-infected piglets, which may be regulated by LGG by altering the expression of TNF signaling pathway, PPAR signaling pathway, and fat digestion and absorption pathway.


Coronavirus Infections , Dietary Supplements , Lacticaseibacillus rhamnosus , Porcine epidemic diarrhea virus , Probiotics , Swine Diseases , Animals , Swine , Probiotics/administration & dosage , Swine Diseases/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/therapy , Oxidative Stress , Intestines/pathology , Powders , Intestinal Mucosa/pathology
18.
World J Microbiol Biotechnol ; 40(7): 198, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727952

Atherosclerosis is viewed as not just as a problem of lipid build-up in blood vessels, but also as a chronic inflammatory disease involving both innate and acquired immunity. In atherosclerosis, the inflammation of the arterial walls is the key characteristic that significantly contributes to both the instability of plaque and the occlusion of arteries by blood clots. These events ultimately lead to stroke and acute coronary syndrome. Probiotics are living microorganisms that, when consumed in the right quantities, offer advantages for one's health. The primary objective of this study was to investigate the influence of Lactiplantibacillus plantarum ATCC 14917 (ATCC 14917) on the development of atherosclerotic plaques and its underlying mechanism in Apo lipoprotein E-knockout (Apoe-/- mice). In this study, Apoe-/- mice at approximately 8 weeks of age were randomly assigned to three groups: a Normal group that received a normal chow diet, a high fat diet group that received a gavage of PBS, and a Lactiplantibacillus plantarum ATCC 14917 group that received a high fat diet and a gavage of 0.2 ml ATCC 14917 (2 × 109 CFU/mL) per day for a duration of 12 weeks. Our strain effectively reduced the size of plaques in Apoe-/- mice by regulating the expression of inflammatory markers, immune cell markers, chemokines/chemokine receptors, and tight junction proteins (TJPs). Specifically, it decreased the levels of inflammatory markers (ICAM-1, CD-60 MCP-1, F4/80, ICAM-1, and VCAM-1) in the thoracic aorta, (Ccr7, cd11c, cd4, cd80, IL-1ß, TNF-α) in the colon, and increased the activity of ROS-scavenging enzymes (SOD-1 and SOD-2). It also influenced the expression of TJPs (occludin, ZO-1, claudin-3, and MUC-3). In addition, the treatment of ATCC 14917 significantly reduced the level of lipopolysaccharide in the mesenteric adipose tissue. The findings of our study demonstrated that our strain effectively decreased the size of atherosclerotic plaques by modulating inflammation, oxidative stress, intestinal integrity, and intestinal immunity.


Apolipoproteins E , Atherosclerosis , Plaque, Atherosclerotic , Probiotics , Animals , Probiotics/administration & dosage , Probiotics/pharmacology , Mice , Atherosclerosis/microbiology , Apolipoproteins E/genetics , Male , Disease Models, Animal , Mice, Knockout , Diet, High-Fat , Lactobacillus plantarum , Cytokines/metabolism , Mice, Inbred C57BL , Inflammation
19.
Nat Commun ; 15(1): 3784, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710716

Probiotic and engineered microbe-based therapeutics are an emerging class of pharmaceutical agents. They represent a promising strategy for treating various chronic and inflammatory conditions by interacting with the host immune system and/or delivering therapeutic molecules. Here, we engineered a targeted probiotic yeast platform wherein Saccharomyces boulardii is designed to bind to abundant extracellular matrix proteins found within inflammatory lesions of the gastrointestinal tract through tunable antibody surface display. This approach enabled an additional 24-48 h of probiotic gut residence time compared to controls and 100-fold increased probiotic concentrations within the colon in preclinical models of ulcerative colitis in female mice. As a result, pharmacodynamic parameters including colon length, colonic cytokine expression profiles, and histological inflammation scores were robustly improved and restored back to healthy levels. Overall, these studies highlight the potential for targeted microbial therapeutics as a potential oral dosage form for the treatment of inflammatory bowel diseases.


Colitis, Ulcerative , Colon , Disease Models, Animal , Extracellular Matrix , Probiotics , Saccharomyces boulardii , Animals , Probiotics/administration & dosage , Female , Mice , Extracellular Matrix/metabolism , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Colon/microbiology , Colon/metabolism , Colon/pathology , Mice, Inbred C57BL , Colitis/therapy , Colitis/microbiology , Colitis/pathology , Cytokines/metabolism , Humans
...